jeudi 30 octobre 2014

Une probable Supernova découverte dans la Galaxie M61

C'est hier que l'astronome japonais Koichi Itagaki a rapporté la découverte de ce qui semble bien être une nouvelle supernova, dans la belle galaxie proche M61. Koichi Itagaki s'est spécialisé dans la recherche de supernovas et en a déjà plus de 90 à son actif. Des images de la galaxie M61 comparées avec des images plus anciennes montrent clairement la présence d'un nouvel objet très brillant.



Images de M61 avant et après la découverte de la SN
(Ernesto Guido, Martino Nicolini, Nick Howes)
Il est intéressant à noter également que ce même Itagaki avait déjà découvert une supernova dans cette même galaxie il y a à peine 6 ans.

M61 est une des galaxies assez brillantes dont on peut voir clairement les bras spiraux dans un télescope d'amateur relativement modeste. Pour la trouver (par exemple avec un Dobson sans goto), c'est même facile : la constellation de la Vierge forme un grand Y, avec la brillante Porrima à l'intersection des deux fourches. Cette constellation est actuellement visible en toute fin de nuit juste avant l'aube vers l'horizon Est-Sud-Est, pile au dessus du point brillant qui rase l'horizon et qui n'est autre que Mercure...

Horizon Est à 6h le 31 octobre 2014
Une fois sur Porrima, vous prendrez la fourche droite du Y, pour vous arrêter sur la première étoile rencontrée, éta Vir. De là, il suffit de suivre un segment imaginaire parallèle à l'autre branche du Y et vous trouvez facilement deux étoiles sur ce segment, il s'agit de 16 Vir (magnitude 4,95) et 17 Vir (magnitude 6,45). M61 se trouve presque exactement au milieu de ces deux étoiles. Facile, non ?

Détail de la constellation de la Vierge.
Avec un télescope de 10 pouces (254 mm), vous devriez voir cette supernova située sur un bord de la galaxie... La supernova a actuellement une magnitude de 13,4 et est donc visible dans des télescopes de plus de 200 mm. 

M61 est une galaxie vraiment proche, elle fait partie de l'amas de Virgo, située à seulement 55 millions d'années lumière. Cette étoile aurait donc explosé 10 millions d'années après la disparition des dinosaures sur Terre...
On ne sait pas encore de quel type de supernova il s'agit, pour cela il faudra mesurer le spectre de la lumière émise.  
Les supernovas ne sont pas des événements si rares, mais des supernovas relativement proches comme celle-ci sont un peu moins courantes, sans parler des supernovas qui ont lieu dans notre propre galaxie, dont la dernière en date remonte à plus de 400 ans... Alors ne boudons pas notre petit plaisir...


mardi 28 octobre 2014

La Naissance des Etoiles Mieux Comprise

Une étoile naît au sein d’un nuage de gaz et de poussières dont elle va se composer. C’est aussi ce nuage de gaz et de poussières qui donnera naissance à tous les petits corps (solides ou gazeux) qui se retrouveront en orbite autour de la jeune étoile.



L’accumulation de matière qui va provoquer l’allumage de réactions de fusion nucléaire signant officiellement  la naissance de l’étoile a lieu par attraction gravitationnelle. Une fois cette petite masse devenue étoile, elle va continuer à absorber de la matière de son cocon gazeux pour grossir jusqu’à atteindre sa taille définitive, en formant autour d’elle un disque d’accrétion. Et ce processus de grossissement est extrêmement efficace, tellement efficace même qu’on ne comprend pas pourquoi. Depuis quelques années des astrophysiciens théoriciens ont émis l’idée que ce processus d’accrétion de matière par des étoiles jeunes pouvait être induit et accéléré par l’action de champs magnétiques. Mais malheureusement, jusqu’à aujourd’hui aucune observation directe de la présence de champs magnétiques au sein de disques d’accrétion d’étoiles jeunes n’avait pu être effectuée.

Disques de gaz et de poussières (en sombre) entourant des étoiles naissantes dans la nébuleuse d'Orion.
La poussière dans les disques, entourés par du gaz chaud de la nébuleuse les fait apparaître sombres dans le visible.
(Mark McCughrean (Max-Planck–Inst. Astron.); C. Robert O'Dell (Rice Univ.); NASA)
Vous l’aurez deviné, c’est désormais chose faite. Dans une étude parue en ligne il y a quelques jours dans la revue Nature, une équipe internationale animée par l’astronome Ian Stephens de l’Institute for Astrophysical Research à l’Université de Boston, montre comment ils sont parvenus à détecter des champs magnétiques dans de tels disques d’accrétion.

Le champ magnétique va agir presque exactement comme le ferait le phénomène de viscosité au sein du disque de matière, par un effet appelé l’instabilité rotationnelle magnétique. Si la matière dans le disque est confinée par des champs magnétiques, alors différentes régions du disque pourront être connectées entre elles par le biais du champ magnétique : des particules chargées (des ions) qui sont en rotation dans le disque à une certaine distance de l’étoile vont produire un champ magnétique, qui agira immédiatement sur toute particule chargée et donc sur le mouvement d’autres particules situées à une autre distance dans le disque, qui elles-mêmes produisent un champ magnétique par leur mouvement, qui se trouvera donc modifié indirectement par le mouvement des premières particules…
Un ion proche de l’étoile devrait se mouvoir plus vite sur son orbite qu’un ion plus éloigné, mais par cet effet d’instabilité rotationnelle magnétique, cet ion proche ralentira et inversement l’ion éloigné accélèrera, comme ce qui se passerait dans un milieu à forte viscosité, mais avec une efficacité bien meilleure.

Le réseau de radiotélescopes CARMA (CalTech, Berkeley University)
Pour mettre en évidence la présence de champs magnétiques, Stephens et ses collègues ont étudié la polarisation de la lumière qu’ils ont observée grâce au réseau de radiotélescopes californien Combined Array for Research in Millimeter-wave Astronomy (CARMA). 
Le fait que la lumière provenant des grains de poussière présents dans les disques protoplanétaires peut se trouver polarisée par un champ magnétique vient du fait que ces grains sont le plus souvent non pas sphériques mais de forme oblongue et tournent sur eux-mêmes. Et comme ils ont de plus une charge électrique non-nulle, ils alignent alors leur grand-axe orthogonalement aux lignes de champ magnétique. La conséquence en est une polarisation de leur émission de lumière. 
Si tous les grains de poussière dans un disque d’accrétion avaient un alignement aléatoire les uns par rapport aux autres, on ne percevrait aucune polarisation dans leur émission totale, mais si la grande majorité d’entre eux sont alignés par la présence d’un champ magnétique, alors l’émission moyenne apparaît polarisée. Et c’est ce qu’ont observé Stephens et al. en scrutant la jeune étoile HL Tau. Les auteurs sont même parvenus à cartographier le disque d’accrétion de HL Tau en mesurant la polarisation dans différentes zones de ce disque.

Ce résultat est très intéressant car il permet d’avancer sur cette question épineuse du moteur des disques d’accrétion. Mais, comme tout beau résultat qui se respecte, il soulève aussi des questions : les modèles théoriques indiquent que les lignes de champs magnétiques devraient s’enrouler autour de l’étoile en suivant le mouvement de la matière formant le disque d’accrétion, or, Stephens et al. trouvent dans HL tau des champs magnétiques qui semblent tous pointer vers la même direction… Aucune réponse n’a pu être apportée pour expliquer cette observation.

De nouvelles investigations seront encore nécessaires sur ce champ de recherches, certes mieux compris, mais qui reste encore incomplet. L’utilisation du grand réseau de radiotélescopes ALMA devrait être très utile dans cette quête dans les années qui viennent.


Référence :

Spatially resolved magnetic field structure in the disk of a T Tauri star
I.Stephens et al.

Nature, Published online 22 October 2014

dimanche 26 octobre 2014

Les Indiens à l'assaut des Neutrinos

Il n'y a pas que les Américains, les Japonais, les Européens et les Chinois qui s'intéressent aux neutrinos, les Indiens aussi veulent tout savoir sur ces particules qui recèlent encore des mystères non résolus.



Pour étudier les neutrinos, il y a plusieurs possibilités : soit on essaye de détecter des neutrinos produits par le Soleil (des neutrinos solaires), ou bien des neutrinos produits par des réactions de rayons cosmiques dans l'atmosphère (des neutrinos atmosphériques), des neutrinos venant directement des confins de la galaxie ou d'autres galaxies (des neutrinos astrophysiques), ou enfin des neutrinos que l'on fabrique nous-même dans des réacteurs nucléaires et dans des accélérateurs de particules.

Vue schématique de l'implantation du
laboratoire souterrain INO
(INO collaboration)
Les neutrinos les plus nombreux et les plus faciles à observer sont sans conteste les neutrinos solaires et atmosphériques. Ce sont ces derniers que les physiciens Indiens ont décidé d'étudier de près dans le but avoué d'avancer dans la compréhension des paramètres encore méconnus des neutrinos, et notamment cette question si importante qu'on appelle le problème de la hiérarchie des masses.

Les neutrinos existent sous la forme de trois saveurs distinctes, électronique, muonique et tauique, reliées aux leptons électron, muon et tau. Ces trois types de neutrinos ont tous une masse, très faible, et différente l'une de l'autre. Mais nous ne savons toujours pas aujourd'hui quelles sont les valeurs de ces masses et surtout quel neutrino est le plus léger et le plus lourd. C'est cette question fondamentale qui est appelée le problème de la hiérarchie des masses en physique des neutrinos. Ce que nous connaissons actuellement des masses des différents neutrinos, ce sont leurs écarts de masse au carré. Nous savons également assez bien comment un neutrino d'une certaine saveur oscille pour se transformer en un neutrino d'une autre saveur au cours de son mouvement dans le vide ou la matière.
Les neutrinos atmosphériques sont principalement constitués de neutrinos de type muonique. Il existe plusieurs familles de détecteurs permettant d'observer ce genre de neutrinos malgré leur très faible probabilité d'interaction (rappelons qu'un neutrino est capable de traverser la Terre de part en part sans interagir) : les détecteurs Cherenkov à eau (comme SuperKamiokande au Japon, Antarès en Méditerranée ou IceCube en Antarctique), les détecteurs à argon liquide, et les détecteurs à aimants. Dans ces trois cas, ce n'est pas le neutrino qui est directement détecté, mais une particule secondaire issue d'une réaction du neutrino incident dans le détecteur, un muon chargé en l’occurrence.
Protoype de chambre à plaque résistive utilisée dans le détecteur ICAL (INO)

Les physiciens Indiens ont décidé de développer un détecteur du troisième type : un énorme aimant sous forme de plaques de fer magnétisées, intercalées par des plaques de détection. Pour cela, ils doivent construire un laboratoire souterrain exclusivement dédié (dans un premier temps) à ce détecteur. L'utilisation d'un laboratoire souterrain est ici cruciale pour protéger le détecteur de muons des milliards de muons provenant (comme les neutrinos recherchés) de la haute atmosphère et qui sont eux aussi assez pénétrants, mais heureusement bien moins que ne le sont les neutrinos, et forment de fait un signal parasite qu'il faut à tout prix éliminer.

Ce projet de laboratoire est appelé India-based Neutrino Observatory (INO) et est prévu d'être creusé sous une montagne du district de Theni dans l'état de Tamil Nadu, environ à 110 km de la ville de Madurai. C'est d'ailleurs à Madurai que seront installés les locaux opérationnels associés au laboratoire souterrain. INO bénéficiera ainsi d'une couverture rocheuse de 1200 m, soit un peu moins que le laboratoire souterrain français de Modane (1800 m de roche). INO sera accédé grâce à un tunnel spécialement creusé pour l'occasion, d'une longueur de 2,1 km, qui débouchera sur une cavité principale d'un volume très intéressant de 132 m x 26 m x 20 m, entourée de plusieurs cavités expérimentales plus petites qui pourront accueillir diverses petites expériences requérant elles-aussi un environnement à ultra-bas bruit de fond radioactif.
Le détecteur indien est nommé ICAL. C'est ce qu'on appelle dans le jargon un calorimètre. Il sera très imposant, composé de 50000 tonnes de plaques de fer magnétisées entrelacées avec des milliers de chambres à plaques résistives, toutes disposées horizontalement. Il sera à même de détecter des particules chargées et de produire leur trace. Le champ magnétique appliqué sur ce gigantesque aimant aura une valeur de 1,3 Tesla, considérable...
ICAL devrait ainsi permettre de déterminer à la fois la nature de la charge des muons détectés (positive ou négative, signant l'interaction d'un neutrino ou d'un antineutrino muonique), leur impulsion, et leur énergie, des données indispensables pour atteindre les paramètres cinématiques des neutrinos incidents, informations cruciales recherchées pour explorer le problème de la hiérarchie des masses des neutrinos.
Les membres de la collaboration INO lors d'une réunion en avril 2014 (INO Collaboration)
A l'heure actuelle, le design du détecteur est en cours grâce au développement de prototypes et à de nombreuses simulations des interactions particules-matière et permettent d'évaluer quelles pourront être les performances du détecteur. La collaboration INO est déja forte d'une cinquantaine de physiciens et physiciennes indiens répartis sur une quinzaine d'instituts et universités. 
Une durée de l'ordre de 15 ans de prise de données semble indispensable pour atteindre une sensibilité intéressante, à moins que les données de ICAL ne soient mises en commun avec d'autres expériences de détection de neutrinos, et pas forcément des neutrinos atmosphériques, mais pourquoi pas des neutrinos produits par l'homme, comme les neutrinos japonais issus d'accélérateur de l'expérience T2K, ou les neutrinos de réacteur français de l'expérience DoubleChooz ou chinois de Daya Bay.

La recherche sur les neutrinos ne connaît heureusement pas de frontières et l'arrivée d'un nouveau venu dans l'arène ne peut être qu'une bonne nouvelle.

Source : 
Next-generation atmospheric neutrino experiments
A. Kouchner
Physics of the Dark Universe,  4, 60-74 (2014)

lundi 20 octobre 2014

IRIS, un Œil acéré sur la Surface du Soleil

Le Soleil est l'objet le plus imposant de notre système solaire, il  fournit la chaleur et la lumière qui permettent la vie. C'est une étoile banale, d'âge moyen, qui produit de l'énergie par fusion nucléaire de ses atomes d'hydrogène en atomes d'hélium. Mais le Soleil n'est pas qu'une simple boule de gaz rayonnante, il possède une atmosphère qui est très changeante et complexe.




Explosion sur la photosphère imagée
par IRIS le 9 mai 2014 (NASA/IRIS)
C'est dans l'optique d'étudier plus en détails l'interface entre la surface du Soleil (appelée la photosphère) et sa couronne que la sonde IRIS a été lancée par la NASA en juin 2013. Cette interface est le lieu où le plasma voit ses caractéristiques changer brutalement, passant d'opaque à transparent et où l'on passe d'un milieu dominé par le gaz (phénomènes hydrodynamiques) à un milieu dominé par des champs magnétiques (phénomènes magnétohydrodynamiques), .
Les premiers résultats d'IRIS (Interface Region Imaging Spectrograph) viennent d'être publiés dans Science et font même l'objet de la couverture et d'un cahier spécial.
Ces premiers résultats très riches montrent une région tout sauf calme : des champs magnétiques tordus côtoient des sortes de petites explosions apparaissant à intervalles réguliers, des particules accélérées produisent un échauffement au sein de boucles de matière coronale, et des petits jets et boucles de plasma apparaissent à des températures plus froides... 
On peut par exemple mentionner la découverte de l'existence de boucles magnétiques de très courte durée de vie, la mise en évidence de zones de plasma ayant des vitesses opposées mais parallèles et adjacentes, ou encore l'observation pour la première fois de petits jets à très haute vitesse apparaissant fréquemment dans les trous coronaux et liés aux structures de convection des couches sous-jacentes, et qui sont suspectés de jouer un rôle important dans la production du vent solaire.

Toutes ces observations fournissent de nouvelles données très utiles pour bien comprendre comment se créent à la fois l'atmosphère solaire et le vent solaire. Le problème de l'échauffement coronal est notamment une énigme bien connue en astrophysique : lorsque l'on s'éloigne, vers l'extérieur, de la surface du Soleil, qui rappelons-le a une température de 6000 degrés, alors que l'on peut s'attendre logiquement à voir la température décroître, et bien au contraire, la température augmente jusqu'à plusieurs millions de degrés... Ce phénomène commence maintenant à être mieux compris, notamment grâce aux observations d'IRIS, qui montrent le rôle primordial que jouent les champs magnétiques dans ce processus.
Vue d'artiste de IRIS (NASA)

Ce sont aussi les champs magnétiques présents dans la zone d'interface de la surface du Soleil qui semblent être responsables des violentes éruptions qui peuvent libérer une énergie équivalente à plusieurs dizaines de millions de bombes nucléaires... IRIS permet d'étudier ces transferts d'énergie à travers l'atmosphère solaire.
Ce qui se déroule dans cette zone d'interface entre la photosphère et la couronne solaire est crucial à connaître car cela impacte directement l'héliosphère, cette zone d'influence du Soleil dans laquelle les planètes se meuvent. 

Pour effectuer ces délicates observations, IRIS est munie d'un télescope relativement modeste de 20 cm (plus petit que mon Dobson !), qui observe le Soleil dans l'ultra-violet proche et lointain, des longueurs d'ondes inaccessibles sur Terre du fait de leur absorption par l'atmosphère. Ce télescope est en fait un spectrographe, qui permet non pas de faire de simples images, mais surtout de décomposer le spectre lumineux pour en extraire toutes les informations précieuses fournissant des éléments clés sur les processus physiques en présence. Et ce n'est que récemment que des avancées informatiques dans le domaine de la magnétohydrodynamique radiative en 3D ont permis de pouvoir exploiter complètement les spectres acquis par IRIS.

Ces premiers résultats montrent vraiment la puissance de la spectroscopie pour comprendre les diverses sources d'énergie du Soleil, qui sont à l'origine de phénomènes qui peuvent nous toucher directement, comme le vent solaire (pour la santé de nos astronautes), les grosses éruptions (pour la santé de nos satellites) ou les éjections de masse coronale (pour la santé de nos centrales électriques et de nos économies).


Sources :
Looking closer at the Sun
Louise K. Harra
Science Vol. 346 no. 6207 pp. 305-306 (17 October 2014)

V. Hansteen et al., Science 346, 1255757 (17 October 2014)
B. De Pontieu et al., Science 346, 1255732 (17 October 2014)
H. Peter et al., Science 346, 1255726 (17 October 2014)
P. Testa et al., Science 346, 1255724 (17 October 2014)
H. Tian et al., Science 346, 1255711 (17 October 2014)

samedi 18 octobre 2014

Possibles traces d'Axions en provenance du Soleil

Une équipe d'astronomes vient peut-être de mettre en évidence un signal indirect de l'existence de matière noire sous forme d'axions, et oui, encore eux... mais en provenance du Soleil cette fois... C'est en observant des rayons X dans la proximité de la Terre que cette équipe en est venu à cette conclusion.


Comme nous en avons déjà parlé ici encore très récemment, les axions, particules pour l'instant hypothétiques, peuvent, du fait de leur masse (certes très faible) et de leur quantité potentielle dans l'Univers, représenter une grande majorité de la matière noire. Ces axions auraient des propriétés physiques peu communes, comme celle de se transformer en photons en présence de champs magnétiques.

Le Soleil (SDO/NASA)
Le leader de cette équipe, George Fraser, est malheureusement décédé deux jours avant le soumission de leur article relatant ce qui pourrait être considéré comme la première pierre d'une découverte dans quelques années, aux Monthly Notices of the Royal Astronomical Society, à paraître le 20 octobre. Un article de 67 pages contenant 39 figures!

Des axions pourraient être produits au cœur du Soleil, traverser facilement les couches internes de notre étoile, puis arriver à la périphérie de la Terre, où, par interaction avec le champ magnétique terrestre, elle se transformeraient en photons (gamme des rayons X). C'est en effet un excès de rayons X, complètement inexplicable qu'ont observé Fraser et ses collègues grâce au télescope spatial XMM-Newton. Inexplicable sauf à considérer la présence d'un flux d'axions en provenance du Soleil, qui permet de mettre une origine à ces photons X.
Les observations montrent que quand XMM-Newton passe à travers le champ magnétique terrestre, du côté exposé au Soleil, il mesure un flux de rayons X plus intense que lorsqu'il se trouve plus éloigné du champ magnétique. Or, en considérant toutes les sources possibles et imaginables connues de rayons X, ce flux atteignant XMM-Newton devrait être le même partout... Les chercheurs ont bien entendu évalué, selon eux, toutes les sources de rayons X potentielles, y compris des phénomènes un peu ésotériques comme des interactions du vent solaire avec le champ magnétique terrestre. Mais rien d'autre que l'hypothèse des axions ne permet d'expliquer correctement les observations.
Vue schématique du phénomène propose (University of Leicester)

Il y a un élément quelque peu surprenant toutefois, c'est que XMM-Newton détecte des rayons X même en étant dans une direction orthogonale à celle du Soleil, ce que les auteurs expliquent en montrant que les axions peuvent subir des diffusions avant de muter en photons. 
Mais des astrophysiciens, comme Peter Coles de l'université du Sussex, sont tout de même sceptiques face à ces observations, en estimant que l'excès de rayons X observé pourrait être dû à des effets inconnus de physique des plasmas. Il se trouve aussi que, d'après Garcia Irastorza, physicien de l'équipe du CERN Axion Solar Telescope, une autre expérience dédiée à la recherche d'axions produits par le Soleil, même si le signal est vraiment intriguant, l'explication avancée par les anglais impliquerait des propriétés physiques pour l'axion qui sont assez différentes de celles théorisées depuis plusieurs décennies.

Quoiqu'il en soit, il est encore trop tôt pour parler de découverte, ce que les astrophysiciens britanniques ne clament d'ailleurs pas. D'autres observations par d'autres types d'expériences sont nécessaires pour creuser ces observations. Et un autre télescope spatial pouvant détecter des rayons X, Chandra X-Ray Observatory, serait à même de faire le même type de mesures que XMM-Newton, avec quelques années d'analyses à prévoir...


Source : 
Potential solar axion signatures in X-ray observations with the XMM-Newton observatory
G. W. Fraser et al.
à paraître dans Monthly Notices of the Royal Astronomical Society (octobre 2014)


jeudi 16 octobre 2014

Ces Galaxies qui ne fabriquent pas d'Etoiles

Les étoiles ne naissent ni dans les choux ni dans les roses, mais dans les galaxies. Ces naissances ont lieu par effondrement gravitationnel de nuages de gaz, essentiellement constitués d'hydrogène (atomique ou moléculaire) et d'hélium. Mais ces nuages comportent généralement aussi quelques traces de poussières faites d'atomes plus gros que l'hélium, que les astronomes ont la sale habitude d'appeler des "métaux". Oui, pour les astrophysiciens, l'oxygène est un métal, allez savoir...



La poussière dans ces nuages de gaz joue un rôle fondamental pour que les étoiles puissent y naître : elle empêche de trop grandes quantités de lumière des étoiles environnantes de pénétrer au cœur du nuage gazeux, ce qui permet alors aux molécules du nuage de pouvoir rayonner leur chaleur vers l'extérieur et se refroidir et donc diminuer la pression gazeuse... jusqu'au point où la force de gravitation devient plus grande que cette pression et provoque l'effondrement qui va finalement allumer l'étoile.
La galaxie naine irrégulière Sextans A
(ESA/NASA/JPL-Caltech/NRAO)

De telles formations d'étoiles arrivent souvent dans les grosses galaxies comme la nôtre. En revanche, on ne sait pas encore très bien comment ça se passe dans les toutes petites galaxies. Il se trouve que ces petites galaxies montrent une abondance très faible en "métaux" dans leurs nuages de gaz, ce qui indique que l'absorption de la lumière y est faible, laissant une pression trop grande pour un collapse gravitationnel. La formation d'étoile y est rendue difficile.
Ce qui fait la différence entre une grosse galaxie comme notre Voie Lactée et de petites galaxies comme Sextans A et ESO 146-G14, objets d'une étude parue cette semaine dans Nature, est leur vitesse de rotation. Notre galaxie a une vitesse de rotation d'environ 200 km/s. Cette grande vitesse de rotation fait que les atomes lourds produits d'explosions stellaires antérieures, se retrouvent piégés dans le milieu interstellaire, et finissent par constituer quelques pourcents de la masse des nuages de gaz de la galaxie. 
Mais les petites galaxies comme Sextans A et ESO 146-G14 tournent beaucoup moins vite : respectivement 23 km/s et 70 km/s. Il faut préciser qu'il existe un lien étroit entre la masse d'une galaxie et sa vitesse de rotation, ces deux petites galaxies sont des minuscules petites choses : 0,2% et 13% de la masse de la Voie Lactée.

Les auteurs de cette étude, Yong Shi et al. montrent que l'abondance en métaux de ces naines est 10 fois plus faible que celle que nous connaissons chez nous. La gravité dans leurs nuages de gaz est en fait si faible qu'elles ne devraient presque pas avoir d'étoiles jeunes. Mais elles en ont quand même quelques unes, et on peut les observer...
Pour déterminer la masse exacte des poussières et le taux de formation d'étoiles dans ces deux petites galaxies, les astrophysiciens chinois et américains menés par Yong Shi ont mobilisé pas moins de trois télescopes spatiaux : Herschel et Spitzer pour observer la poussière en infrarouge, et Galex, pour observer les (rares) étoiles naissantes dans l'ultra-violet.
Le résultat étonnant qu'ils obtiennent est qu'il y a beaucoup plus de poussières que prévu, mais aussi beaucoup plus de gaz, et ce gaz est majoritairement moléculaire (deux atomes d'hydrogène accrochés ensemble). Mais si l'efficacité de formation d'étoiles était similaire à celle de la Voie Lactée, avec tout ce gaz, il devrait y avoir un taux de formation d'étoiles 10 fois plus important que ce qui est observé ici. Une énigme aujourd'hui sans réponse.
Heureusement, ce champ de recherche sur les nuages de gaz moléculaire et les poussières entre actuellement dans une phase très intéressante avec le démarrage du grand radiotélescope interférométrique ALMA (Atacama Large Millimeter Array), installé dans les Andes chiliennes. L'un des objectifs de ALMA est justement d'observer les faibles rayonnements provenant de molécules comme le monoxyde de carbone, très présent dans les cocons d'étoiles.

Ces minuscules galaxies d'aujourd'hui ont certaines ressemblances avec les toutes premières galaxies qui existaient il y a 13 milliards d'années et qui ont pu devenir les belles galaxies comme la nôtre. Elles sont donc d'autant plus importantes à bien connaître.

source : 

Inefficient star formation in extremely metal poor galaxies
Yong Shi et al.
Nature 514, 335–338 (16 October 2014)