Une équipe d’astrophysiciens vient de mettre en évidence la présence d’un trou noir supermassif de 600 000 masses solaires dans la Grand Nuage de Magellan (LMC), grâce à l’analyse de la trajectoire de 10 étoiles hypervéloces qui en sont issues. Ils publient leur étude dans The Astrophysical Journal.
Les étoiles hypervéloces (HVS) sont principalement produites par le mécanisme de Hills. Le mécanisme de Hills nous dit que lorsqu'une binaire stellaire s'égare près d'un trou noir supermassif, une étoile du couple peut être capturée, tandis que l'autre est éjectée à des vitesses pouvant atteindre plus de 1000 km s-1. L'étoile capturée peut ensuite produire un événement de rupture de marée observable ou une variété de classes apparentées de transitoires. L'étoile éjectée, elle, est projetée dans le halo galactique, où elle peut être observée pendant des centaines de mégannées avant de sortir de la galaxie à jamais. Le relevé HVS Survey a permis de détecter 21 étoiles de type B de la séquence principale qui se trouvent dans le halo extérieur de la Voie Lactée et qui sont compatibles avec une éjection par le mécanisme de Hills.
Jiwon Jesse Han (Smithonian Center for Astrophysics, Harvard) et ses collaborateurs ont revisité les trajectoires de ces étoiles à la lumière des mouvements propres du relevé astrométrique de précision de Gaia ainsi que des contraintes modernes sur l'orbite du LMC autour de la Voie Lactée. Ils ont constaté que la moitié des HVS découvertes par le HVS Survey remontent non pas vers le Centre Galactique mais vers le LMC.
La recherche observationnelle de HVS la plus fructueuse à ce jour a été le HVS Survey (W. R. Brown et al. 2006). Suite à la découverte fortuite d'une étoile B non liée dans le halo externe par W. R. Brown et al. en 2005, le relevé HVS a effectué une recherche systématique d'étoiles B non liées dans le halo via un suivi spectroscopique de candidates sélectionnées par photométrie. Comme il n'y a pas eu de formation récente d'étoiles dans le halo, toutes les jeunes étoiles trouvées dans le halo doivent y avoir voyagé d'ailleurs. L'étude HVS a ciblé les étoiles B parce qu'elles sont principalement jeunes et qu'elles peuvent être efficacement sélectionnées par photométrie. Pendant près d'une décennie, l'étude a permis d'obtenir les spectres de plus de 1400 sources du halo, conduisant finalement à la découverte de 21 étoiles de type B suspectées d'être non liées (W. R. Brown et al. 2014). Ces étoiles se trouvent à des distances de 50 à 120 kpc et ont des masses de 2,5 à 4 M⊙. Le relevé avait une fonction de sélection bien définie, ce qui rend l'échantillon bien adapté à la modélisation de la population.
Il existe d'autres processus, en plus du mécanisme de Hills, qui peuvent accélérer les étoiles à des vitesses élevées. Le plus important est le kick décrit par Blaauw en 1961, où une étoile est éjectée d'une binaire lorsque sa compagne explose. Pour les étoiles compactes, telles que les naines blanches et les sous-naines chaudes, cela peut produire des vitesses d'éjection comparables au mécanisme de Hills. En effet, la deuxième candidate HVS découverte a été US 708 (également connue sous le nom de HVS 2 ; H. A. Hirsch et al. 2005), qui est une naine chaude brûlant de l'hélium, qui a presque certainement été éjectée d'une supernova. Cependant, les étoiles B de la séquence principale ne peuvent pas être éjectées de supernovas avec des vitesses aussi élevées : leur vitesse maximale d'éjection de supernova est d’environ 500 km s-1, et la grande majorité d'entre elles sont éjectées à des vitesses beaucoup plus lentes de seulement quelques dizaines de kilomètres par seconde. Les interactions à trois et quatre corps dans les amas d'étoiles ont également été proposées comme un autre mécanisme de production d'étoiles à grande vitesse, mais elles produisent généralement des vitesses plus lentes que le mécanisme de Hills, et le taux d'éjection prédit des étoiles avec des vitesses supérieures à 500 km s-1 est beaucoup plus faible que le taux de naissance des HVS observés (W. R. Brown 2015).
Une caractéristique de l'échantillon de HVS découvert par l'étude HVS qui s'est avérée difficile à expliquer, c’est la distribution anisotrope des étoiles sur le ciel : environ la moitié des HVS non liées se trouvent dans la direction de la constellation du Lion, avec 52% (11 sur 21) des étoiles regroupées dans seulement 5% de la zone couverte par l'étude HVS. Les chercheurs appellent ce regroupement la « surdensité de Leo ». Plusieurs modèles ont été proposés pour expliquer la surdensité de Leo, comme par exemple un potentiel gravitationnel galactique anisotrope ou l'éjection d'étoiles d'une galaxie naine perturbée par la marée. Mais une idée particulièrement convaincante a été avancée par D. Boubert & N. W. Evans en 2016, ils ont étudié la distribution des HVS provenant d'un hypothétique trou noir de 170 000 M⊙ dans le Grand Nuage de Magellan et ils ont trouvé que la distribution résultante est dipolaire sur le ciel, en raison du mouvement orbital du LMC.
Han et son équipe ont repris la même idée, mais cette fois en bénéficiant des données astrométriques de Gaia. Etant donné leur distance typique de ∼70 kpc, les HVS ont de petits mouvements propres de l'ordre de 1 mas par an. Il est donc difficile de retracer les HVS jusqu'à leur site de lancement. Les mesures de Gaia ont permis à plusieurs auteurs de réexaminer les trajectoires des HVS et de monter que plusieurs HVS ne remontent pas jusqu'au centre galactique.
Parmi ces étoiles hypervéloces, l'étoile HE 0437-5439, également connue sous le nom de HVS 3 (H. Edelmann et al. 2005), fournit un indice très intéressant. Cette étoile de 9 M⊙ se trouve à ∼60 kpc du centre galactique mais à seulement ∼15 kpc du LMC. Il est peu probable qu'elle provienne de la Voie Lactée, car cela nécessiterait un temps de vol beaucoup plus long que la durée de vie d'une étoile de 9 M⊙. Les mouvements propres de Gaia permettent maintenant de déterminer définitivement que l'étoile est tracée jusqu'au LMC (D. Erkal et al. 2019).
Han et ses collaborateurs ont donc construit un modèle prospectif pour des HVSs éjectées par un trou noir supermassif dans le LMC par le mécanisme de Hills et qui seraient observées par la fonction de sélection de l'étude HVS. Les distributions spatiales et cinématiques des HVSs prédites par la simulation sont remarquablement similaires aux distributions observées. En particulier, les chercheurs reproduisent le regroupement évident d’HVS autour de la constellation du Lion. Ils expliquent que ce regroupement se produit parce que les HVSs du LMC voient leur vitesse boostée de 300 km s-1 par le mouvement orbital du LMC, et que les étoiles lancées parallèlement à ce mouvement sont préférentiellement sélectionnées comme candidates HVS.
Les astrophysiciens ont construit un test selon lequel chaque étoile provient soit du centre galactique, soit du centre du LMC. Parmi les 16 étoiles qu’ils peuvent classer avec confiance, sept sont cohérentes avec une origine du Centre Galactique, tandis que les neuf autres étoiles sont cohérentes avec une origine du centre du LMC.
Les HVS originaires du LMC sont regroupées sur le ciel et montrent des vitesses d'éjection systématiquement plus faibles, ce qui est cohérent avec le fait qu'elles ont été produites par un trou noir supermassif moins massif que Sgr A*. Han et ses coauteurs en concluent qu’un trou noir supermassif dans le centre du LMC, qu’ils nomment LMC*, peut produire de façon auto-consistante des étoiles hypervéloces qui correspondent aux distributions observées des positions et des vitesses du relevé HVS. Et ce modèle prédit une surdensité de HVSs à l'endroit précis de la surdensité de Leo.
Han et ses collaborateurs ont appliqué également le cadre de leur modèle prospectif aux étoiles fugueuses provenant du disque du LMC et du disque galactique, éjectées à des vitesses mesurées pour les HVS provenant du LMC. Ils constatent que si de telles sorties de disque rapides existent, elles devraient être facilement détectables avec le relevé HVS ; et d'autre part, ils observent que la distribution de ces étoiles à l'heure actuelle est significativement plus dispersée sur le ciel par rapport aux observations, en raison d'un étalement des vitesses tangentielles induites par la rotation du disque du LMC. Ils en concluent donc que les HVS observées, originaires du LMC, doivent être principalement produites par un trou noir supermassif dans le LMC. Ils montrent des preuves supplémentaires de l'existence de LMC*, comme ils l'ont baptisé, en se basant sur l'étoile HE 0437-5439, qui a été éjecteé à une vitesse trop élevée pour être expliqué par autre chose que le mécanisme de Hills. Enfin, les chercheurs ont produit une série de simulations pour différentes masses de LMC* et différentes propriétés binaires afin d'effectuer une recherche de paramètres, et notamment la masse de ce trou noir supermassif. Les observables clés des simulations sont les vitesses moyennes d'éjection induites par Sgr A* et LMC*, et le rapport de comptage entre les deux populations de HVS.
La masse la plus probable que Han et son équipe trouvent est d'environ 600 000 masses solaires. Ils précisent que cette masse de LMC* est significativement plus grande que ce qui a été précédemment supposé dans la littérature (par exemple, D. Erkal et al. 2019 supposaient une masse de LMC* de 10 000 M⊙ minimum, et A. Gualandris & S. Portegies Zwart en 2007 concluaient à une masse supérieure à 1000 M⊙).
Ils précisent qu'alors qu'un trou noir plus léger - comme considéré dans des travaux précédents - peut produire une HVS comme HE 0437-5439, en revanche, seul un trou noir supermassif peut produire un nombre comparable de HVS à ce que produit Sgr A*. Par ailleurs, les limites supérieures d'observation directe de la masse de LMC* sont bien plus élevées que n'importe laquelle de ces valeurs, à environ 10 millions M ⊙ minimum (H. Boyce et al. 2017).
Un autre élément très intéressant, c'est que l'on sait que la dispersion de vitesse stellaire et la masse du trou noir supermassif d'une galaxie sont fortement corrélées. Bien que le LMC n'ait pas de bulbe classique, on peut utiliser la dispersion de vitesse de sa barre et de son halo stellaire interne (∼50 km s -) pour estimer où se situerait le LMC* sur la relation M − σ. Han et ses collaborateurs montrent deux versions de la relation M − σ : l'une déduite d'un large échantillon de galaxies et l'autre adaptée aux trous noir supermassifs de faible masse. Pour les deux relations, 600 000 M⊙ tombe presque exactement sur la ligne σ = 50 km s-1. Bien que ces relations aient une incertitude typique d'environ 0,5 dex (un facteur 3 dans en linéaire), il est clair qu'une masse de LMC* de 600 000 M⊙ est bien dans la plage attendue.
Un autre test de cohérence est proposé par Han et ses coauteurs : il consiste simplement à mettre à l'échelle la masse de Sgr A*, 4 millions M⊙, au rapport de masse stellaire du LMC à la Voie Lactée, ce qui donne une valeur de 200 000 M⊙ . En rappelant que Sgr A* tombe sous la relation M − σ par un facteur d'environ 2, on peut alors naïvement s'attendre à une masse de LMC* d'environ 400 000 M⊙, ce qui est dans la plage de masse dérivée par Han et al.. Les chercheurs en concluent que la masse de LMC* dérivée de cette étude est entièrement compatible avec la relation M − σ .
Han et ses collaborateurs rappellent en conclusion qu'il existe une incertitude majeure concernant l'orbite du LMC, qui provient des incertitudes observationnelles sur les positions, les vitesses et les masses des Nuages de Magellan. Par exemple, une variation de 50 % de la masse totale du LMC peut entraîner une différence actuelle allant jusqu'à environ 40 km s-1 dans les vitesses des HVS. Bien que ces variations aient un impact mineur sur la population globale des HVS, elles peuvent altérer les orbites inférées des étoiles individuelles tracées jusqu'au centre du LMC. Mais compte tenu de ces incertitudes, ils soulignent que la prédiction de la surdensité de Leo est indépendante des orbites précises : seul un trou noir supermassif dans le LMC peut produire une surdensité de HVS étroite telle qu'observée dans les données.Du coup, ils peuvent même utiliser les HVS observées originaires du LMC pour contraindre l'orbite réelle du LMC. L'historique orbital correct du système LMC–Voie Lactée devrait maximiser le chevauchement des HVS d'origine LMC avec les positions passées du centre du LMC. Han et son équipe gardent cette idée pour une future étude...
Source
Hypervelocity Stars Trace a Supermassive Black Hole in the Large Magellanic Cloud
Jiwon Jesse Han et al.
The Astrophysical Journal, Volume 982, Number 2 (28 march 2025)
https://doi.org/10.3847/1538-4357/adb967
Illustrations
1. Cartographie des positions des étoiles hypervéloces éjectées du LMC par le mécanisme de Hills (Han et al.).
2. Jiwon Jesse Han et al.